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I. INTRODUCTION 

There have been a number of generalizations of metric 

space. One such generalization is Menger space 

initiated  by Menger [3]. It is a probabilistic 

generalization in which we assign to any two points x 

and y, a distribution function Fx,y.  Schweizer and 

Sklar [5] studied this concept and gave some 

fundamental results on this space. 

 The notion of compatible mapping in a 

Menger space has been introduced by Mishra [4].  

Sessa [7] initiated the tradition of improving 

commutativity in fixed point theorems by introducing 

the notion of weakly commuting maps in metric space.  

Jungck [1] soon enlarged this concept by introducing  

the concept of compatible maps.  Recently, Jungck and 

Rhoades [2] termed a pair of self maps to be 

coincidentally commuting or equivalently weak-

compatible if they commute at their coincidence points.   

The concept of R-weakly commuting maps in fuzzy 

metric space has been introduced by Vasuki [8]. 

 The main object of this paper is to extend and 

generalize the result of Vasuki [8] from fuzzy metric 
space to probabilistirc 2-metric space in the following 

ways : 

(i) To increase the number of maps from 2 to 4. 

(ii) To relax the continuity requirement of the maps 

completely. 

II. PRELIMINARIES 

Definition 2.1. [4] A mapping F : R → R+ is called a 

distribution if it is non-decreasing left continuous with  

inf { F (t) | t ∈ R } = 0   and  sup { F (t) | t ∈ R} = 1. 

We shall denote by L the set of all distribution 

functions while H will always denote the specific 
distribution function defined by  

  
0 , t 0

H(t) .
1 , t 0

≤
= 

>
 

Definition 2.2. [9] A probabilistic 2-metric space (2-

PM space) is an ordered pair  

(X, F) where X is an abstract set and F is a function 

defined on X × X × X into L, the collection of all 

distribution functions.  The value of F at (x, y, z) ∈  X 
× X × X  is generally represented by Fx,y,z or F(x, y, 

z).  The distribution function F(x, y, z) satisfy the 

following conditions: 

(1) F(x, y, z; 0) = 0, 

(2) For all distinct x, y in X there exists a point z in X 

such that 

F(x, y, w; t) < 1 for some t > 0. 

(3) F(x, y, z; t) = 1 for all t > 0 if and only if at least two 

of the three points are equal. 

(4) F(x, y, z; t) =  F(x, z, y ; t) = F(y, z, x; t)(Symmetry) 

(5) If F(x, y, z; t1) =  F(x, z, y; t2) = F(z, y, x; t3) = 1 

then   

F(x, y, z,; t1 + t2 + t3) = 1. 

Definition 2.3. [9] The mapping t: [0, 1] × [0, 1] × [0, 

1] → [0, 1] is a t-norm if t satisfies the following 
conditions: 

(1)  t(x, 1, 1) = x , t(0, 0, 0) = 0; 

(2)  t(x, y, z) = t(x, z, y) = T(z, y, x); 

(3)  t(x1, y1, z1) ≥  t(x2, y2, z2)  for  x1 ≥  x2,  y1 ≥ y2,  

z1 ≥ z2; 

(4)  t(t(x, y, z),  p, q)  = t(x, t(y, z, p), q) = t(x, y, t(z, p, 

q)). 
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Definition 2.4. [9]  A Menger probabilistic 2-metric 

space is a triplet (X, F, t) where  

(X, F) is a 2-PM space and t is a t-norm satisfying the 

following triangle inequality : 

F(x, y, z; t1 + t2 + t3) ≥ y(F(x, y, p; t1), F(x, p, z; t2), 

F(p, y, z; t3) for all x, y, z, p ∈ X and t1, t2, t3 ≥  0. 

Definition 2.5. [9] A sequence {xn} in a 2-Menger 

space (X, F, t) is said to converge  to a point x ∈ X if 

for each ε > 0 and λ > 0 there exists a positive integer 

M(ε,λ) such that  

F(xn, x, a; ε)  > 1 -  λ,     for all a ∈ X and n ≥ M(ε, λ).  

The sequence {xn} converges to x   if and only if  

F(xn, x, a; t) = H(t)    for all a, 

where H is the distribution function defined as above.  

Definition 2.6. [9] A sequence {xn} in a 2-Menger 

space (X, F, t) is said to be Cauchy if, for each ε > 0 

and λ > 0 there exists a positive integer M(ε, λ) such 
that  

F(xn, xm, a; ε) > 1 - λ, for all a ∈ X and n, m 

≥  M(ε, λ). 
Lemma 2.1. [9] Let {xn} be a sequence in a 2-Menger 

space  (X, F, t) where t is continuous and  satisfies t(x, 

x, x) ≥ x  for all x ∈  (0, 1). If there exists a positive 
number h < 1 such that 

F(xn+1, xn, a; hu) ≥  F(xn, xn-1, a; u),  n = 1, 2, 3, ...  

for all a ∈  X and u ≥ 0 then {xn} is a Cauchy sequence 

in X.  

Definition 2.7. Self mappings A and S of a Menger 

probabilistic 2-metric space (X, F, t) are said to be 

compatible if  FASxn, SAxn, a(x) → 1 for all a ∈ X,  x 

> 0, whenever {xn} is a sequence in X such that Axn, 

Sxn → u for some u in X, as n → ∞. 

Definition 2.7.  Self maps S and T of a Menger 

probabilistic 2-metric space (X, F, t) are said to be 

weak-compatible if they commute at their coincidence 

points, i.e. Sx = Tx for x ∈ X implies STx = TSx. 
Remark 2.1. It is obvious that the concept of weak 

compatibility is more general than that of compatibility.  

Lemma 2.1. [9] Let {pn} be a sequence in a Menger 

probabilistic 2-metric space (X, F, t) with continuous t-

norm and t(x, x) ≥ x.  Suppose, for all x ∈ [0, 1], there 

exists k ∈ (0, 1) such that for all x > 0 and n ∈ N, 

 Fpn, pn+1, a(kx)  ≥  Fpn-1, pn,  a(x) 

Or Fpn, pn+1, a(x)  ≥  Fpn-1, pn,  a(k-1x).  

Then {pn} is a Cauchy sequence in X. 

In [8], Vasuki proved the following result: 

Theorem 2.1. Let (X, M,*) be a complete fuzzy metric 

space and f and g be R-weakly commuting self 

mappings of X satisfying the condition 

 M(fx, fy, t) ≥  r[M(gx, gy, t)], 

where r : [0, 1] → [0,1] is a continuous function such 

that r(t)>t for each 0 < t < 1.  If f(x) ⊂ g(x) and either f 

or g is continuous then f and g have a unique common 

fixed point.  

III. MAIN RESULT 

Theorem 3.1.  Let A, B, S and T be self mappings of a 

complete probabilistic 2-metric space (X, F, min) 

satisfying  

(3.1) A(X) ⊂ T(X), B(X) ⊂ S(X);  
(3.2) One of A(X), B(X), T(X) or S(X) is complete; 

(3.3)   Pairs (A, S) and (B, T) are weak compatible; 

(3.4) for all x, y ∈ X and t > 0, 

FAx,By,a(t) ≥  rFSx,Ty,a(t) 

where r : [0, 1] → [0, 1] is some continuous function 
such that r(t) > t, for each 0 < t < 1.  

 Then A, B, S and T have a unique common 

fixed point in X. 

Proof.  Let x0 ∈ X be any arbitrary point.   

As A(X) ⊂ T(X) and B(X) ⊂ S(X), there exists x1, x2 

∈ X such that 
 Ax0 = Tx1  and     Bx1 = Sx2. 

Inductively, construct sequences {yn} and {xn} in X 

such that 

y2n+1 = Ax2n  = Tx2n+1,    y2n+2 = Bx2n+1 = 

Sx2n+2 for n = 0, 1, 2, ... . 

Now, using (3.4) with x = x2n and y = x2n+1, we 

obtain that 

Fy2n+1, y2n+2, a(t) = FAx2n,Bx2n+1, a(t)  

   ≥  rFSx2n,Tx2n+1, a(t) 

  =  rFy2n, y2n+1,a(t) 

  >  Fy2n, y2n+1,a(t)   for t ∈ (0, 1). 

Similarly, 

    Fy2n+2, y2n+3, a(t) >  Fy2n+1, y2n+2, a(t). 

In general,   

         Fyn+1, yn , a(t) >  Fyn, yn-1, a(t). 

Thus, {Fyn+1, yn, a(t), n > 0} is a increasing sequence 

of positive real numbers in [0, 1] and therefore tends to 

a limit L ≤ 1.  

If L < 1, then   Fyn+1, yn, a(t) = L > r(1) > 1, 

which is a contradiction.   

Hence, L = 1.   
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Hence, for all n and p,  

Fyn, yn+p, a(t) = 1. 

Thus, {yn} is a Cauchy sequence in X.  By 

completeness of X, {yn} converges to  

z ∈ X.  
Hence, its subsequences   

{Ax2n} → z, {Sx2n} → z, {Tx2n+1} → z and 

{Bx2n+1} → z.                                                  …(3.1) 

Case I. T(X) is complete.  

In this case z ∈ T(X). 

Hence, there exists u ∈ X such that z = Tu.      …(3.2) 
Step 1. By putting x = x2n and  y = u in (3.4), we 

obtain 

 FAx2n,Bu, a(t) ≥ rFSx2n,Tu, a(t).      …(3.3) 

Taking limit as n → ∞ and using (1), we get 

 Fz,Bu, a(t)  ≥ rFz,Tu, a(t) 

      = rFz,z, a(t)  = r(1) = 1     …(3.4) 

which gives z = Bu = Tu.   

As (B, T) is weak compatible, we get 

 TBu = BTu,   

i.e.  Tz = Bz.                   …(3.5) 

Step II.  By putting x = x2n  and y = z in (3.4), we 

obtain that  

  FAx2n,Bz, a(t) ≥ rFSx2n,Tz, a(t). 

Taking limit as n → ∞ and using (1), (2) and (3.5), we 
get 

  Fz, Bz, a(t) ≥  rFz, z, a(t) 

      =  r(1) = 1, 

which gives z = Bz  and we get 

 Tz = Bz = z.                  …(3.6) 

Step III. As B(X) ⊂ S(X), there exists v ∈ X such that 

 z = Bz = Sv. 

By putting x = v, y = z in (3.4), we get 

 FAv, Bz, a(t) ≥ rFSv, Tz, a(t) 

i.e. FAv, z, a (t) ≥ rFz,z(t)  = 1 

which gives Av = z = Sv and weak compatibility of (A, 

S) gives  

 ASv = SAv,   
i.e.  Az = Sz. 

Step IV. By putting x = z, y = z in (3.4) and assuming 

Az ≠  Bz, we get 

  FAz, Bz, a(t) ≥ rFSz, Tz, a(t) 

        = rFAz, Bz, a(t) 

       > FAz, Bz, a (t), 

which is a contradiction and we get  Az = Bz. 

Combining all the results, we get 

 z = Az = Bz = Sz = Tz, 

i.e., z is a common fixed point of the four self maps A, 

B, S and T.  

Case II.  S(X) is complete.  

In this case z ∈ S(X).  Hence there exists w ∈ X such 
that z = Sw.  

Step I.  By putting x = w, y = x2n+1 in (3.4), we get 

 FAw,Bx2n+1, a(t) ≥ rFSw,T2n+1, a(t). 

Taking limit as n  → ∞ and using (3) and (4), we obtain 

that 

 FAw, z, a (t) ≥ rFz, z, a(t) 

       =  r(1)  = 1. 

Hence, z = Aw = Sw and weak comatibility of (A, S) 

gives  

 ASw = SAw,  

i.e.  Az = Sz.                (3.7) 

Step II.   Put x = z,  y = x2n+1 in (3.4) and we get 

 FAz, Bx2n+1, a(t) ≥ rFSz, Tx2n+1, a(t). 

Taking limit as n  → ∞  and using (3) and (4), we 

obtain that 

 FAz, z, a (t) ≥  rFAz, z, a(t) 

    >  FAz, z, a(t),  if  FAz, z, a(t) > 0,  

which is a contradiction, hence z = Az = Sz.  

Step III. As A(X) ⊂ T(X), there exists some u1 ∈ X, 

such that  

   z = Az = Tu1.   

By putting x = x2n, y = u1 in (3.4), we have 

 FAx2n, Bu1, a(t) ≥  rFSx2n,Tu1, a(t). 

Taking limit as n → ∞ and using (1) and (2), we get  

 Fz, Bu1, a(t) ≥ rFz,  z, a(t) 

      = r(1) = 1.  

Thus z = Bu1 = Tu1.   

As (B, T) is weakly compatible, we get 

 TBu = BTu,  

i.e. Tz = Bz.  

Step IV.  By putting x = z, y = z in (3.4) and assuming 
Az  ≠  Bz,  we have 

 FAz, Bz, a(t) ≥ rFSz,  Tz, a(t) 

       = rFAz, Bz, a(t) 

      >  FAz, Bz, a(t),  

which is a contradiction and we suppose Az = Bz = z.  

Combining all the results, we get 

 z = Az = Bz = Sz = Tz, 

i.e.   z  is a common fixed point of the maps A, B, S and 

T in this case also.  

Case III. As A(X) or B(X) is complete.  

As A(X) ⊂ T(X)  and B(X) ⊂ S(X), the result follows 
from case I and case II respectively. 

Uniqueness.   Let z and z' be the two common fixed 

points of the maps A, B, S and T then z = Az = Bz = Sz 

= Tz and  z' = Az' = Bz' = Sz' = Tz'.  
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On assuming z ≠  z' and using (3.4), we get 

 Fz, z'(t) =  FAz,  Bz', a(t)  

  ≥  rFSz, Tz', a(t) 

              = rFz, z', a(t) 

  >  Fz, z', a(t), if Fz, z', a(t) > 0 

which is a contradiction hence z = z' and we get z is the 

unique common fixed point of the four self maps.  

If we take A = B = f and S = T = g in theorem 3.1., we 

get 

Corollary 3.2.  Let (X, F, min) be a complete 

probabilistic 2-metirc space and f and g are weak 

compatible self mappings of X satisfying the conditions 

: 

Ffx, fy, a(t) ≥ rFgx, gy, a(t) 

where,  r : [0, 1] → [0, 1] is a continuous function such 
that r(t) > t for each 0 < t < 1.  

 If f(x) ⊂ g(x) and either f(x) of g(x) is 
complete then f and g have a unique common fixed 

point in X.  

 Now, on taking S = I, the identity map on X, in 

theorem 3.1, we have the following result for three self 

maps none of which is continuous and just a pair of 

them is needed to be weak compatible only.  

Corollary 3.3. Let A, B and T be self mappings of a 

complete probabilistic  2-metric space (X, F, min) 

satisfying : 

  A(X) ⊂ T(X);                       …(3.8) 
   (B, T) is weak compatible;   …(3.9) 

  ∀ x, y ∈ X and t > 0,          …(3.10) 

  FAx, By, a(t)  ≥  rFx, Ty, a(t),  

where r : [0, 1] → [0, 1] is some continuous function 
such that  r(t) > t for each 0 < t < 1.  

Then A, B and T have unique common fixed point in X.  

Again, taking  A = I, the identity map on X, in 

theorem 3.1 we have another result for three self maps 

none of which is continuous and just a pair of them is 

needed to be weak compatible only.  

Corollary 3.4.  Let B, S and T be self mappings of 

complete probabilistic 2-metric space (X, F, min) 
satisfying : 

 B(X) ⊂ S(X), T is onto;                      …(3.11) 
 (B, T) is weak compatible;                 …(3.12) 

 ∀ x, y ∈ X and t > 0,                         …(3.13) 

 Fx, By, a(t) ≥  rFSx, Ty, a(t),  

where r : [0, 1] → [0, 1] is continuous function such 
that r(t) > t for each 0 < t < 1.  

 

 

 

 

 
 

 

 

 

Then B, S and T have a unique common fixed point in 

X.  

Again on taking S = T = I the identity map in theorem 

3.1, the conditions (3.1), (3.2) and (3.3) are satisfied 

trivially and we get the following important result. 

Corollary 3.5. Let A and B be self mappings of 

complete  
probabilistic 2-metric space (X, F, min) satisfying : 

  FAx, By, a(t) ≥ rFx, y, a(t)  

∀ x, y ∈ X, where r : [0, 1] → [0, 1] is continuous 
function such that r(t) > t for each  

0 < t < 1.  

 Then A and B have a unique common fixed 

point in X.  

 Now, taking A = I and B = I in theorem 3.1, 

the conditions (3.2), (3.3) are satisfied trivially and we 

get an important result for surjective maps as follows. 

Corollary 3.6. Let  S and T be self mappings of 

complete probabilistic 2-metric space (X, F, min) 

satisfying : 

  Fx, y(t) ≥  rFSx, Ty(t)  

∀ x, y ∈ X, where r : [0, 1] → [0, 1] is continuous 
function such that r(t) > t for each  

0 < t < 1.  

 Then S and T have a unique common fixed 

point in X.  
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