

ISSN No. (Print): 0975-1718 ISSN No. (Online): 2249-3247

Common Fixed Point Theorem in Probabilistic 2-Metric Space by Weak Compatibility

V. K. Gupta¹, Arihant Jain² and Rajesh Kumar¹

¹Department of Mathematics, Govt. Madhav Science P.G. College, Ujjain (Madhya Pradesh) India ²Department of Mathematics, Shri Guru Sandipani Girls Institute of Professional Studies, Ujjain (Madhya Pradesh) India

> (Corresponding author: Arihant Jain) (Received 02 October, 2018 accepted 27 December, 2018) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: The object of this paper is to extend and generalize the result of Vasuki [8] from fuzzy metric space to probabilistic 2-metric space using the concept of weak compatibility.

Keywords: Common fixed point, Menger space, Probabilistic 2-metric space, compatible maps, semi-compatible maps, weak compatible maps.

AMS Subject Classification: Primary 47H10, Secondary 54H25.

I. INTRODUCTION

There have been a number of generalizations of metric space. One such generalization is Menger space initiated by Menger [3]. It is a probabilistic generalization in which we assign to any two points x and y, a distribution function $F_{x,y}$. Schweizer and Sklar [5] studied this concept and gave some fundamental results on this space.

The notion of compatible mapping in a Menger space has been introduced by Mishra [4]. Sessa [7] initiated the tradition of improving commutativity in fixed point theorems by introducing the notion of weakly commuting maps in metric space. Jungck [1] soon enlarged this concept by introducing the concept of compatible maps. Recently, Jungck and Rhoades [2] termed a pair of self maps to be coincidentally commuting or equivalently weakcompatible if they commute at their coincidence points. The concept of R-weakly commuting maps in fuzzy metric space has been introduced by Vasuki [8].

The main object of this paper is to extend and generalize the result of Vasuki [8] from fuzzy metric space to probabilistirc 2-metric space in the following ways :

(i) To increase the number of maps from 2 to 4.

(ii) To relax the continuity requirement of the maps completely.

II. PRELIMINARIES

Definition 2.1. [4] A mapping $F : R \to R^+$ is called a *distribution* if it is non-decreasing left continuous with inf { $F(t) | t \in R$ } = 0 and sup { $F(t) | t \in R$ } = 1.

We shall denote by L the set of all distribution functions while H will always denote the specific distribution function defined by

$$H(t) = \begin{cases} 0 & , & t \le 0 \\ 1 & , & t > 0 \end{cases}.$$

Definition 2.2. [9] A probabilistic 2-metric space (2-*PM* space) is an ordered pair (X, F) where X is an abstract set and F is a function defined on $X \times X \times X$ into L, the collection of all distribution functions. The value of F at $(x, y, z) \in X \times X \times X$ is generally represented by $F_{x,y,z}$ or F(x, y, z). The distribution function F(x, y, z) satisfy the following conditions:

(1) F(x, y, z; 0) = 0,

(2) For all distinct x, y in X there exists a point z in X such that

F(x, y, w; t) < 1 for some t > 0.

(3) F(x, y, z; t) = 1 for all t > 0 if and only if at least two of the three points are equal.

(4) F(x, y, z; t) = F(x, z, y; t) = F(y, z, x; t)(Symmetry)(5) If $F(x, y, z; t_1) = F(x, z, y; t_2) = F(z, y, x; t_3) = 1$ then

$$F(x, y, z_{1}; t_{1} + t_{2} + t_{3}) = 1.$$

Definition 2.3. [9] The mapping t: $[0, 1] \times [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a *t*-norm if t satisfies the following conditions:

(1) t(x, 1, 1) = x, t(0, 0, 0) = 0;

(2) t(x, y, z) = t(x, z, y) = T(z, y, x);

(3) $t(x_1, y_1, z_1) \ge t(x_2, y_2, z_2)$ for $x_1 \ge x_2, y_1 \ge y_2, z_1 \ge z_2;$

(4) t(t(x, y, z), p, q) = t(x, t(y, z, p), q) = t(x, y, t(z, p, q)).

Definition 2.4. [9] A *Menger probabilistic 2-metric* space is a triplet (X, F, t) where (X, F) is a 2-PM space and t is a t-norm satisfying the following triangle inequality :

 $F(x, y, z; t_1 + t_2 + t_3) \ge y(F(x, y, p; t_1), F(x, p, z; t_2),$

 $F(p, y, z; t_3)$ for all x, y, z, $p \in X$ and $t_1, t_2, t_3 \ge 0$.

Definition 2.5. [9] A sequence $\{x_n\}$ in a 2-Menger

space (X, F, t) is said to *converge* to a point $x \in X$ if for each $\varepsilon > 0$ and $\lambda > 0$ there exists a positive integer M(ε, λ) such that

 $F(x_n,\,x,\,a;\,\epsilon)\,>1\,-\,\lambda,\quad\text{ for all }a\in\,X\text{ and }n\geq M(\epsilon,\,\lambda).$

The sequence $\{x_n\}$ converges to x if and only if

 $F(x_n, x, a; t) = H(t)$ for all a,

where H is the distribution function defined as above.

Definition 2.6. [9] A sequence $\{x_n\}$ in a 2-Menger space (X, F, t) is said to be *Cauchy* if, for each $\varepsilon > 0$

and $\lambda > 0$ there exists a positive integer $M(\epsilon, \lambda)$ such that

 $F(x_n, x_m, a; \epsilon) > 1 - \lambda, \text{ for all } a \in X \text{ and } n, m \\ \geq M(\epsilon, \lambda).$

Lemma 2.1. [9] Let $\{x_n\}$ be a sequence in a 2-Menger space (X, \mathbf{F}, t) where t is continuous and satisfies $t(x, x, x) \ge x$ for all $x \in (0, 1)$. If there exists a positive number h < 1 such that

 $F(x_{n+1}, x_n, a; hu) \ge F(x_n, x_{n-1}, a; u), n = 1, 2, 3, ...$

for all $a \in X$ and $u \ge 0$ then $\{x_n\}$ is a Cauchy sequence in X.

Definition 2.7. Self mappings A and S of a Menger probabilistic 2-metric space (X, F, t) are said to be *compatible* if F_{ASx_n} , SAx_n , $a(x) \rightarrow 1$ for all $a \in X$, x > 0, whenever $\{x_n\}$ is a sequence in X such that Ax_n ,

 $Sx_n \rightarrow u$ for some u in X, as $n \rightarrow \infty$.

Definition 2.7. Self maps S and T of a Menger probabilistic 2-metric space (X, F, t) are said to be *weak-compatible* if they commute at their coincidence points, i.e. Sx = Tx for $x \in X$ implies STx = TSx.

Remark 2.1. It is obvious that the concept of weak compatibility is more general than that of compatibility. **Lemma 2.1.** [9] Let $\{p_n\}$ be a sequence in a Menger probabilistic 2-metric space (X, F, t) with continuous t-norm and $t(x, x) \ge x$. Suppose, for all $x \in [0, 1]$, there exists $k \in (0, 1)$ such that for all x > 0 and $n \in N$,

$$F_{p_n, p_{n+1}, a}(kx) \ge F_{p_{n-1}, p_n, a}(x)$$

Or $F_{p_n, p_{n+1}, a}(x) \ge F_{p_{n-1}, p_n, a}(k^{-1}x)$. Then $\{p_n\}$ is a Cauchy sequence in X.

In [8], Vasuki proved the following result:

Theorem 2.1. Let (X, M,*) be a complete fuzzy metric space and f and g be R-weakly commuting self mappings of X satisfying the condition

 $M(fx, fy, t) \ge r[M(gx, gy, t)],$

where $r : [0, 1] \rightarrow [0,1]$ is a continuous function such that r(t)>t for each 0 < t < 1. If $f(x) \subset g(x)$ and either f or g is continuous then f and g have a unique common fixed point.

III. MAIN RESULT

Theorem 3.1. Let A, B, S and T be self mappings of a complete probabilistic 2-metric space (X, F, min) satisfying

 $(3.1) \qquad A(X) \subset T(X), B(X) \subset S(X);$

(3.2) One of A(X), B(X), T(X) or S(X) is complete;

(3.3) Pairs (A, S) and (B, T) are weak compatible;

 $(3.4) \quad \text{for all } x, y \in X \text{ and } t > 0,$

 $F_{Ax,By,a}(t) \ge rF_{Sx,Ty,a}(t)$

where $r : [0, 1] \rightarrow [0, 1]$ is some continuous function such that r(t) > t, for each 0 < t < 1.

Then A, B, S and T have a unique common fixed point in X.

Proof. Let $x_0 \in X$ be any arbitrary point.

As $A(X) \subset T(X)$ and $B(X) \subset S(X)$, there exists $x_1, x_2 \in X$ such that

 $Ax_0 = Tx_1$ and $Bx_1 = Sx_2$.

Inductively, construct sequences $\{\boldsymbol{y}_n\}$ and $\{\boldsymbol{x}_n\}$ in \boldsymbol{X} such that

 $y_{2n+1} = Ax_{2n} = Tx_{2n+1}, \quad y_{2n+2} = Bx_{2n+1} = Sx_{2n+2}$ for n = 0, 1, 2, ...

Now, using (3.4) with $x = x_{2n}$ and $y = x_{2n+1}$, we obtain that

$$\begin{split} F_{y_{2n+1}, y_{2n+2}, a}(t) &= F_{Ax_{2n}, Bx_{2n+1}, a}(t) \\ &\geq rF_{Sx_{2n}, Tx_{2n+1}, a}(t) \\ &= rF_{y_{2n}, y_{2n+1}, a}(t) \\ &> F_{y_{2n}, y_{2n+1}, a}(t) \text{ for } t \in (0, \end{split}$$

Similarly,

$$F_{y_{2n+2}, y_{2n+3}, a}(t) > F_{y_{2n+1}, y_{2n+2}, a}(t).$$

In general,

1).

$$F_{y_{n+1}, y_n, a}(t) > F_{y_n, y_{n-1}, a}(t).$$

Thus, { $F_{y_{n+1}}$, y_n , $a^{(t)}$, n > 0} is a increasing sequence of positive real numbers in [0, 1] and therefore tends to a limit $L \le 1$.

If L < 1, then $F_{y_{n+1}, y_n, a}(t) = L > r(1) > 1$,

which is a contradiction.

Hence, L = 1.

Hence, for all n and p,

$$F_{y_n, y_{n+p}, a}(t) = 1.$$

Thus, $\{y_n\}$ is a Cauchy sequence in X. By completeness of X, $\{y_n\}$ converges to $z \in X$.

Hence, its subsequences

w

i.e.

i.e.

$$\{Ax_{2n}\} \rightarrow z, \{Sx_{2n}\} \rightarrow z, \{Tx_{2n+1}\} \rightarrow z \text{ and}$$

$$\{Bx_{2n+1}\} \rightarrow z. \qquad \dots (3.1)$$

Case I. T(X) is complete.

In this case $z \in T(X)$.

Hence, there exists $u \in X$ such that z = Tu. ...(3.2) **Step 1.** By putting $x = x_{2n}$ and y = u in (3.4), we obtain

$$F_{Ax_{2n},Bu, a}(t) \ge rF_{Sx_{2n},Tu, a}(t).$$
 ...(3.3)

Taking limit as $n \rightarrow \infty$ and using (1), we get

$$\begin{split} F_{z,Bu, a}(t) &\geq rF_{z,Tu, a}(t) \\ &= rF_{z,z, a}(t) = r(1) = 1 \quad \dots (3.4) \\ \text{hich gives } z = Bu = Tu. \end{split}$$

As (B, T) is weak compatible, we get

TBu = BTu, i.e. Tz = Bz. ...(3.5) Step II. By putting $x = x_{2n}$ and y = z in (3.4), we

Step 11. By putting $x = x_{2n}$ and y = z in (3.4), we obtain that

$$F_{Ax_{2n},Bz, a}(t) \ge rF_{Sx_{2n},Tz, a}(t).$$

Taking limit as $n \rightarrow \infty$ and using (1), (2) and (3.5), we get

$$F_{z, Bz, a}(t) \ge rF_{z, z, a}(t)$$

which gives z = Bz and we get

Tz = Bz = z. ...(3.6)
Step III. As
$$B(X) \subset S(X)$$
, there exists $v \in X$ such that

z = Bz = Sv.By putting x = v, y = z in (3.4), we get

$$F_{Av, Bz, a}(t) \ge rF_{Sv, Tz, a}(t)$$

$$F_{AV, Z, a}(t) \ge rF_{Z, Z}(t) = 1$$

which gives Av = z = Sv and weak compatibility of (A, S) gives

ASv = SAv,Az = Sz.

Z

Step IV. By putting x = z, y = z in (3.4) and assuming $Az \neq Bz$, we get

$$\begin{split} F_{Az, Bz, a}(t) &\geq rF_{Sz, Tz, a}(t) \\ &= rF_{Az, Bz, a}(t) \\ &> F_{Az, Bz, a}(t), \end{split}$$

which is a contradiction and we get Az = Bz. Combining all the results, we get

$$= Az = Bz = Sz = Tz$$

i.e., z is a common fixed point of the four self maps A, B, S and T.

In this case $z \in S(X)$. Hence there exists $w \in X$ such that z = Sw.

Step I. By putting x = w, $y = x_{2n+1}$ in (3.4), we get

$$F_{Aw,Bx_{2n+1}, a^{(t)} \ge rF_{Sw,T_{2n+1}, a^{(t)}}}$$

Taking limit as $n \rightarrow \infty$ and using (3) and (4), we obtain that

$$F_{Aw, z, a}(t) \ge rF_{z, z, a}(t)$$

= r(1) =

Hence, z = Aw = Sw and weak comatibility of (A, S) gives

1.

(3.7)

ASw = SAw,i.e. Az = Sz.

Step II. Put x = z, $y = x_{2n+1}$ in (3.4) and we get

FAz,
$$Bx_{2n+1}$$
, $a^{(t) \ge rF}Sz$, Tx_{2n+1} , $a^{(t)}$.

Taking limit as $n \rightarrow \infty$ and using (3) and (4), we obtain that

$$\begin{aligned} F_{Az, z, a} & (t) \geq rF_{Az, z, a}(t) \\ & > F_{Az, z, a}(t), \text{ if } F_{Az, z, a}(t) > 0, \end{aligned}$$

which is a contradiction, hence z = Az = Sz. **Step III.** As $A(X) \subset T(X)$, there exists some $u_1 \in X$, such that

 $z = Az = Tu_1$.

By putting $x = x_{2n}$, $y = u_1$ in (3.4), we have

$$F_{Ax_{2n}, Bu_1, a^{(t)} \ge rF_{Sx_{2n}, Tu_1, a^{(t)}}}$$

Taking limit as $n \rightarrow \infty$ and using (1) and (2), we get

$$F_{z, Bu_1, a^{(t)} \ge rF_{z, z, a^{(t)}}}$$

= r(1) = 1.

Thus $z = Bu_1 = Tu_1$.

As (B, T) is weakly compatible, we get

$$TBu = BTu$$
,

i.e. Tz = Bz.

Step IV. By putting x = z, y = z in (3.4) and assuming Az \neq Bz, we have

$$F_{Az, Bz, a}(t) \ge rF_{Sz, Tz, a}(t)$$
$$= rF_{Az, Bz, a}(t)$$
$$> F_{Az, Bz, a}(t),$$

which is a contradiction and we suppose Az = Bz = z. Combining all the results, we get

$$z = Az = Bz = Sz = Tz$$
,

i.e. z is a common fixed point of the maps A, B, S and T in this case also.

Case III. As A(X) or B(X) is complete.

As $A(X) \subset T(X)$ and $B(X) \subset S(X)$, the result follows from case I and case II respectively.

Uniqueness. Let z and z' be the two common fixed points of the maps A, B, S and T then z = Az = Bz = Sz= Tz and z' = Az' = Bz' = Sz' = Tz'. On assuming $z \neq z'$ and using (3.4), we get

$$\begin{split} F_{z, z'}(t) &= F_{Az, Bz', a}(t) \\ &\geq rF_{Sz, Tz', a}(t) \\ &= rF_{z, z', a}(t) \\ &> F_{z, z', a}(t), \text{ if } F_{z, z', a}(t) > 0 \end{split}$$

which is a contradiction hence z = z' and we get z is the unique common fixed point of the four self maps.

If we take A = B = f and S = T = g in theorem 3.1., we get

Corollary 3.2. Let (X, F, min) be a complete probabilistic 2-metirc space and f and g are weak compatible self mappings of X satisfying the conditions :

$$F_{fx, fy, a}(t) \ge rF_{gx, gy, a}(t)$$

where, $r : [0, 1] \rightarrow [0, 1]$ is a continuous function such that r(t) > t for each 0 < t < 1.

If $f(x) \subset g(x)$ and either f(x) of g(x) is complete then f and g have a unique common fixed point in X.

Now, on taking S = I, the identity map on X, in theorem 3.1, we have the following result for three self maps none of which is continuous and just a pair of them is needed to be weak compatible only.

Corollary 3.3. Let A, B and T be self mappings of a complete probabilistic 2-metric space (X, F, min) satisfying :

$$\begin{array}{ll} A(X) \subset T(X); & \dots(3.8) \\ (B, T) \text{ is weak compatible; } & \dots(3.9) \\ \forall x, y \in X \text{ and } t > 0, & \dots(3.10) \\ F_{Ax, By, a}(t) \geq rF_{x, Ty, a}(t), \end{array}$$

where $r : [0, 1] \rightarrow [0, 1]$ is some continuous function such that r(t) > t for each 0 < t < 1.

Then A, B and T have unique common fixed point in X. Again, taking A = I, the identity map on X, in theorem 3.1 we have another result for three self maps none of which is continuous and just a pair of them is needed to be weak compatible only.

Corollary 3.4. Let B, S and T be self mappings of complete probabilistic 2-metric space (X, F, min) satisfying :

B(X) ⊂ S(X), T is onto; ...(3.11)
(B, T) is weak compatible; ...(3.12)

$$\forall x, y \in X \text{ and } t > 0,$$
 ...(3.13)
E $x = (t) ≥ tE_0 = t(t)$

$$T_{x}$$
, By, $a^{(t)} \ge T_{x}$, Ty, $a^{(t)}$,

where $r : [0, 1] \rightarrow [0, 1]$ is continuous function such that r(t) > t for each 0 < t < 1.

Then B, S and T have a unique common fixed point in X.

Again on taking S = T = I the identity map in theorem 3.1, the conditions (3.1), (3.2) and (3.3) are satisfied trivially and we get the following important result.

Corollary 3.5. Let A and B be self mappings of complete

probabilistic 2-metric space (X, F, min) satisfying :

^FAx, By,
$$a^{(t)} \ge rF_x$$
, y, $a^{(t)}$

 $\forall x, y \in X$, where $r : [0, 1] \rightarrow [0, 1]$ is continuous function such that r(t) > t for each 0 < t < 1.

Then A and B have a unique common fixed point in X.

Now, taking A = I and B = I in theorem 3.1, the conditions (3.2), (3.3) are satisfied trivially and we get an important result for surjective maps as follows.

Corollary 3.6. Let S and T be self mappings of complete probabilistic 2-metric space (X, F, min) satisfying :

$$F_{x, y}(t) \ge rF_{Sx, Ty}(t)$$

 $\forall x, y \in X$, where $r : [0, 1] \rightarrow [0, 1]$ is continuous function such that r(t) > t for each 0 < t < 1.

Then S and T have a unique common fixed point in X.

REFERENCES

[1]. Jungck, G., (1986). Compatible mappings and common fixed point. *International Journal of Mathematics and Mathematical Sciences*, **9**, 771-779.

[2]. Jungck, G. and Rhoades, B.E., (1998). Fixed point for set valued functions without continuity. *Indian J. Pure and Applied Mathematics*, **29**, 227-238.

[3]. Menger, K., (1942). Statistical Metrices, *Proc. Nat. Acad. Sci. USA*, **28**, 535-537.

[4]. Mishra, S.N., (1991). Common fixed points of compatible mappings in PM-spaces, *Math. Japonica* **36**(2): 283-289.

[5]. Schweizer, B. and Sklar, A., (1960). Statistical metric spaces, *Pacific J. Math.* **10**, 313-334.

[6]. Singh, B. and Chauhan, M.S., (2000). Common fixed point of compatible maps in fuzzy metric spaces, Fuzzy sets and systems, **115**, 471-475.

[7]. Sessa, S., (1982). On a weak commutative condition in fixed point consideration, Publ. Inst. Math. (Beogard), **32**, 146-153.

[8]. Vasuki, R., (1998). Common fixed point theorem in a fuzzy metric space, *Fuzzy sets and system*, **97**, 395-397.

[9]. Wenzhi, Z., (1987). Probabilistic 2-metric space, *J. Math. Research. Expo*, **2**, 241-245.